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Abstract. Let F be an algebraically closed field of characteristic p > 0,
which is complete with respect to a non-Archimedean absolute value. Let
V be a projective subvaricty of PM (F). In this paper, we will prove some
second main theorems for non-Archimedean meromorphic maps of F™ into
V intersecting a family of hypersurfaces in N —subgeneral position with
truncated counting functions.

1. Introduction and Main results

Let F be an algebraically closed field of characteristic p > 0, which is com-
plete with respect to a non-Archimedean absolute value. Let N > n and
g > N+1.Let Hy,..., Hy be hyperplanes in P"*(F). The family of hyperplanes
{H,}L, is said to be in N-subgeneral position in P*(F) if H;,N---NH;, = &
for every 1 < jp < --- < jn <gq.

In 2017, Yan [6] proved a truncated second main theorem for a non -
Archimedean meromorphic map into P™(F) with a family of hyperplanes in
subgeneral position. With the standart notations on the Nevanlinna theory for
non-Archimedean meromorphic maps, his result is stated as follows.

Theorem A (cf. [6, Theorem 4.6]) Let F be an algebraically closed field of
characteristic p > 0, which is complete with respect to a non-Archimedean abso-
lute value. Let f : F™ — P™(F) be a linearly non-degenerate non-Archimedean
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meromorphic map with index of independence s andrankf = k. Let Hy, ..., H,
be hyperplanes in P™(F) in N -subgeneral position (N > n). Then, for allr > 1,
q
a N+
(q—2N+n—1)Ty(r) < ZlNJ(c )(H,-,r) s
i=

1
T logr + O(1),

where

go Ikt ifp>0,
S ln—k+1 ifp=0.

Here, the index of independence s and the rankf are defined in Section 2
(Definition 2.1).

Also, in 2017, An and Quang [2] proved a truncated second main theorem
for meromorphic mappings from C™ into a projective variety ¥V c PM(C) with
hypersurfaces. Motivated by the methods of Yan [6] and An-Quang [2], our aim
in this article is to generalize Theorem A to the case where the map f is from
F™ into an arbitrary projective variety V of dimension n in P (F) and the
hyperplanes are replaced by hypersurfaces of PM(F) in N-subgeneral position
with respect to V.

Firstly, we give the following definitions.

Definition B. Let V be a projective subvariety of PM () of dimension n (n <
M). Let Q1,...,Q, (¢ >n+1) be q hypersurfaces in P (F). The family of
hypersurfaces {Q;}_, is said to be in N-subgeneral position with respect to V

if
N+1

Vﬂ(ﬂ Qi;) =3 foranyl<i; <--- <iny1 <q.
j=1

If N =n, we just say {Q;}i_, is in general position with respect to V.
Now, let V' be as above and let d be a positive integer. We denote by I(V)

the ideal of homogeneous polynomials in Fxzo, ..., x| defining V and by H,
the F-vector space of all homogeneous polynomials in Fxzg, ...,z of degree
d. Define "
d .
I4(V) = —————— and Hy(d) := dimpy(V).
a(V) V) nH, ™ v(d) == dimpI4(V)

Then Hy (d) is called the Hilbert function of V. Each element of I4(V') which
is an equivalent class of an element Q € Hy, will be denoted by [Q)],

Definition C. Let f : F™ — V be a non-Archimedean meromorphic map with
a reduced representation £ = (fo,..., fm). We say that f is degenerate over
I,(V) if there is [Q] € 14(V) \ {0} such that Q(f) = 0. Otherwise, we say that
f is non-degenerate over I4(V).

We will generalize Theorem A to the following.
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Theorem 1.1. Let V be a projective subvariety of PM(F) of dimension n (n <
M). Let {Q:}X, be hypersurfaces of PM(F) in N-subgeneral position with
respect to V with deg Q; = d; (1 <1i < q). Letd be the least common multiple of
dis. Let f be a non-Archimedean meromorphic map of F™ into V', which is non-
degenerate over I4(V') with the d"-index of non-degeneracy s and rankf = k.
Then, for all r > 1,

<q (2N +n-1)Hy(V) logr+0(1),

q
ntl )Tf(r) S;%N}KO)(Q@M—W

where

P>~ (Ha(V) — k) ifp>0,
Hy(V) =k ifp=0.

Here, the d*"-index of non-degeneracy s is defined in Section 2 (Definition
2.1). Note that, in the case where V =P"(C),d =1, Hy(V) = n+1, our result
will give back Theorem A.

For the case of counting function without truncation level, we will prove
the following.

Theorem 1.2. Let V be a arbitrary projective subvariety of PM(F). Let
{Qi}YL_, be hypersurfaces of PM(F) in N-subgeneral position with respect to
V. Let f be a non-constant non-Archimedean meromorphic map of F™ into V.
Then, for any r > 0,

1
deg Q;

(q—N)Ty(r) < Z Ng(Q;, )+ O(1),

where the quantity O(1) depends only on {Q;}i_,.

We see that, the above result is a generalization of the previous results in
[1, 5].

2. Basic notions and auxiliary results

In this section, we will recall some basic notions from Nevanlinna theory
for non-Archimedean meromorphic maps due to Cherry-Ye [3] and Yan [6].

2.1. Non-Archimedean meromorphic function. Let I be an algebraically
closed field of characteristic p, complete with respect to a non-Archimedean
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absolute value | |. We set ||z|| = maxi<ij<m |2 for z = (21,...,2m) € F™ and
define

B (r) :={z € F" 2| <r}.
For a multi-index v = (v1,...,7m) € ZZ,, define
D=2t =yt s M =A el

For an analytic function f on F™ (i.e., entire function) given by a formal
power series
f=) a2
¥

with a., € F such that lim,| o |a,[r1" = 0 (Vr € F* = F \ {0}), define

|f|r = sup, |ay |r7].
We denote by &, the ring of all analytic functions on F™.

We define a meromorphic function f on F™ to be the quotient of two analytic
functions g, h € &, such that g and h have no common factors in &, i.e., f = .
We define

9]+
|f|7’ = .
Rl

We denote by M,, the field of all meromorphic functions on F™, which is the
fractional field of &,,.
2.2. Derivatives and Hasse derivatives. For a meromorphic function

f € My, and a multi-index v = (y1,...,%m), we set
ol r

I T

o=

Let o = (av1,..., ) and 8 = (B1,..., Bm) be multi-indices. We say that
a>pifa; >piforalli=1,....,m. If > 3, we define

For an analytic function f = > aq2® and a multi-index v, we define the
Hasse derivative of multi-index v of f by

Df = Z (a) a2 7.
az>y v

We may verify that D®DP f = (u;;ﬂ) D+ for all f € &,,. Therefore, the Hasse
derivative D can be extended to meromorphic functions in the following way:
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e For a multi-index ¢; = (0,...,0, , 1 ,0,...,0), we set D;“f =
jth—position ‘
DFei(f).

e For a meromorphic function f = % (g,h € &), we define

hDilg — gDilh

i - ple.—
D% = D} f = 2o IS0

i=1...,m.

e For v = (y1,...,%m), we may choose a sequence of multi-indices v =
al > a? > .- > ol such that o/ = o™ +e;, (ji € {L,...,m}) for
1<i<|y|—1and ahl = €jy Uy € {1,...,m}) and define

o 1 o .
DUh= gy P pH b V= bl = Ll =2
Qg1

We summarize here the fundamental properties of the Hasse derivative from
[6] as follows:

(1) D’Y(f+g) = D7f+D797 fvg S Mm-

(ii) DY(fg) = X0 s D fDPg, f,9 € My,
(i) DoDAf = (*[P) D+ f, f € My,
(

iv) (Lemma on the logarithmic derivative) For f € &,

|D’Yf|r < |f|r |87f|r S |f|r

= rhl’ rhvl”

(v) For f € &, and a multi-index -y, let P be an irreducible element of &,
that divides f with exact multiplicity e. If e > ||, then P¢~ 7| divides D7 f.

For each integer k > 2, let
Mp[k] ={Q € Mp, : DiQ =0for all 0 <i <k and 1 <j <m}.

If F has characteristic 0, then M., [k] =F for all k£ > 2. If F has characteristic
p > 0and if s > 1 is an integer, then M,,[p®] is the fraction field of &,,, where
Enlp®] = {g”" : g € En} is a subring of &,,. Moreover,

My [P+ 1] = M, [p°].

2.3. Non-Archimedean Nevanlinna’s function.

Let f = Zn/ a,2Y € &, be an holomorphic function. The counting function
of zeros of f is defined as follows:

N7(0,7) = ns(0,0) logr + /O'T(nf(o, . nf(0,0))% (r>0),
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where
ng(0,7) = sup{|y]; la,|r17" = f],} and n(0,0) = min{|7|; a, # 0}.

Let f be a meromorphic function on F™. Assume that f = £, where g, h
arc holomorphic functions without common factors. We define

N#(0,7) = Ng(0,7) and Nf(oo,r) = Np(0,r).
The Poisson-Jensen-Green formula (see [3, Theorem 3.1]) states that
N¢(0,7) — Ng(oo,r) =log|f| + Cy for all r >0,

where C is a constant depending on f but not on 7.

Suppose that f # a for a € F. The counting function of f with respect to
the point a is defined by

N¢(a,7) = Ng_q(0,7).

The proximity functions of f with respect to co and a are defined respec-
tively as follows

my (00, r) = max{0,log |f|,} = log™ | f|, and my(a,r) = my,;_a(c0,7).
The characteristic function of f is defined by
Ty(r) = my(o0,7) + Ny(oo,7).

Note that, if f = { as above then T (r) = max{log|gl,,log |h|,} + O(1).
The first main theorem is stated as follows:

T¢(r) = my(a,r) + N¢(a,r) + O(1) (Vr > 0).

2.4. Truncated counting function.
Let f €&, For j=1,...,m, define

!
g; = ged(f, Djl(f)) and h; = g_
j
The radical R(f) of f is defined to be the least common multiple of h;’s.

Case 1: F has characteristic p = 0. The truncated counting function of
zeros of f is defined by

l
N{P(0,7) = Nyagrn(p (0,7)-
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In particular,
1
NE(0,7) = Npp) (0,7).

Case 2: F has characteristic p > 0. We define R,:(f) by induction in
5 =0,1,... For s = 0, set Ryo(f) = R(f). For s > 1, assume that R,s-1(f)
has been defined. We set

_ f - !

= —, ¢g; = ged ,Dp , hy ==

= gt m gy @ A PN =
fori=1,...,m. Let H be the least common multiple of h;’s, and set

G H
 ged(H Ry (H)P* )

which is a p®th power. Let R be the p®th root of G and define the higher
p°-radical Rps(f) of f to be the least common multiple of R,.-1(f) and R.

Take a sequence {r;};en C |F*| such that r; — oo. Take s; such that if
P € &, is irreducible such that P|f and P is not unit on B™(r;) then P|Rp:(f)
for s > s;. Let u; be a unit on B™(r;) such that

Rpysi (f) = ujRysin (f).

Define v; = [];° ; Uy, which is unit on B™(r;), and

SU) = fim T2l

€ Ems
Jj—o00 ’Uj

which is called the square free part of f. The truncated (to level [) counting
function of zeros of f is defined by

l
N} )0,r) = Ngeacs,s0p)H(0,7).

2.5. Non-Archimedean meromorphic maps and family of hypersur-
faces.

Let V be a projective subvariety of PM (F) of dimension n (n < M). For

a positive integer d, take a basis {[A1],..., [Ag,]} of Ia(V), where A; €
Halzo, ... zr). Let f: F™ — PM(F) be a non-Archimedean meromorphic
map with a reduced representation f = (fo, ..., far), which is non-degenerate

over I;(V). We have the following definition.

Definition 2.1. Assume that F has the character p > 0. Denote by s the
smallest integer such that any subset of {Ai(f),..., Ag,cv)(£)} linearly inde-
pendent over F remains linearly independent over My, [p*]. We call s is the
d™-index of non-degeneracy of f.



136 Si Duc Quang

We see that the above definition does not depend on the choice of the basis
{[Ai];1 < i < Hy(V)} and the choice of the reduced representation f. If
V =PM(F) and d = 1 then s is also called the index of independence of f (sce
[6, Definition 4.1]).

The following three lemmas are proved in [2] for the case of F = C and
the canonical absolute value. However, with the same proof, they also hold
for arbitrary algebraic closed field F of character p > 0 and complete with an
arbitrary absolute value. We state them here without the proofs.

Throughout this paper, we sometimes identify each hypersurface in a pro-
jective variety with its defining homogeneous polynomial. The following lemma,
of An-Quang [2] may be considered as a generalization of the lemma on Nochka
weights in [4].

Lemma 2.1 (cf. [2, Lemma 3]). Let V be a projective subvariety of PM (F) of

dimension n (n < M). Let Q1,...,Qq be q (¢ > 2N — k + 1) hypersurfaces in

PM () in N -subgeneral position with respect to V of the common degree d. Then

there are positive rational constants w; (1 < i < q) satisfying the following:
i)0<w; <1, Vie{l,...,q},

ii) Setling & = max;cqwj, one gets

q
dwj=d(g—2N+n—1)+n+1.
j=1
n+1 n

1)) ——————— < @ .
R e

w) For RC{1,...,q} with iR = N +1, then ), pwi <n+1.

v) Let B; > 1 (1 < i < gq) be arbitrarily given numbers. For R C {1,...,q}
with 4R = N + 1, there is a subset R° C R such that $R° = rankp{[Q;];i €

R°}y=n—+1 and
115 < ]I E-

iER iER°

IN

Let @ be a hypersurface in P"(FF) of degree d defined by 3, 7, arz’ =0,
where Z; = {(io,....in) € NI g+ iy =d} I = (o, .. i) € Za,
ol = 2l 2 and (wo : -+ : xpr) is homogeneous coordinates of PM (F).
Let f be an non-Archimedean meromorphic map from F into a projective
subvariety V' of PM(F) with a reduced representation f = (fo,..., far). We

define
Q(f) = § aIfIv
I€Zy

where f! = fé’" <o+ fin for T = (g, ...,i,). We have the following lemma.
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Lemma 2.2 (cf. [2, Lemma 4]). Let {Q;}icr be a set of hypersurfaces in P™(FF)
of the common degree d and let f be a meromorphic mapping of F™ into P"(F)
with a reduced representation £ = (fo,..., far). Assume that (\,cp QiNV = 2.
Then, there exist positive constants o and 3 such that

al £} < max |Q; (£)]- < Bl for any r > 0.

Lemma 2.3 (cf. [2, Lemma 5]). Let {Q;}!_, be a set of q hypersurfaces in
PM(F) of the common degree d. Then there exist (Hy (d) —n—1) hypersurfaces
{Ti}fivl(d)_n_l in PM(F) such that for any subset R € {1,...,q} with 4R =
rankp{[Q;];i € R} = n+1, we get rankp{{[Q;];i € R}U{[T;];1 <i < Hy(V)—
n—1}} = Hy(d).

2.5. Value distribution theory for non-Archimedean meromorphic
maps.

Let f: F™ — V c PM(F) be a non-Archimedean meromorphic map with
a reduced representation f = (fo,..., fn). The characteristic function of f is
defined by

Ty(r) = log |f]l,,

where |f|; = maxi<o<n | fi|r. This definition is well-defined upto a constant.

Let @ be a hypersurface in P"(F) of degree d defined by > ;. 7, arx! =0,
where ay € F (I € Z;) and are not all zeros. If Q(f) # 0 then we define the
proximity function of f with respect to @ by

Il - 19|
m(Q.r) = log 1l _IZIL
! QD)L
where ||Q|| := maxjez, |ar|. We see that the definition of m;(Q,r) does not

depend on the choices of the presentations of f and Q.

The truncated (to level [) counting function of f with respect to @ is defined
by

N(@Q.1) = NS (0.7).

QM)
For simplicity, we will omit the character ) if I = .

The first main theorem for non-Archimedean meromorphic maps states that
dTy(r) = ms(Q,r) + N(Q,7) + O(1).

Proposition 2.1 (cf. [6, Propositions 4.3, 4.4]). Let p be the character of F.
Assume that [ : Fp, — P"(F) is a non-Achimedean meromorphic map, which is
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linearly non-degenerate over F, with a reduced representation £ = (fo,..., fn)-
Then there exist multi-indices v° = (0,...,0),~4%,...,7y™ with

s—1 _ .
WO <<y < mo < {7 (MR P>,
n—k+1 ifp=0

where s is the index of independence of f and k = rankf, such that the gener-
alized Wronskian

Wooon(for- - fn) = det (D”if,-

) £ 0.
1) 0<ij<n

Here rankf is defined by

rankf = rank g, {(D”Y fo,..., D7 fn); |y <1} — 1.
3. Proof of main theorems

Proof. [Proof of Theorem 1.1] By replacing Q; with Qj/ 4 if necessary, we
may assume that all @; (i = 1,...,¢) do have the same degree d. It is easy
to see that there is a positive constant 8 such that 8||f||? > |Q;(f)| for every
1<i<gq. Set Q:={l,---,q}. Let {w;}{ , be as in Lemma 2.1 for the family
{Qi}L . Let {Ti}flz‘il(v)_n_l be (Hy(V)—n—1) hypersurfaces in PM (F), which
satisfy Lemma 2.3.

Take a IF-basis {[Ai]}f:"l(d) of I4(V), where A; € Hy. Since f is non-
degenerate over I4(V), it implies that {A4;(f);1 < i < Hy(d)} is linearly inde-
pendent over F. By Proposition 2.1, there multi-indices {y! = (0,...,0),72---,
yHvd}  Zm such that [0 < -+ < [yH4(V)] < kg, where

pH(Hy(d) - k) ifp>0,
Ko < o
Hy(V)—k itp=0

and the generalized Wronskian

_ g
W = det (D Aj(f))lgi’jSHdW);—éO.
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Here, we note that
k= rankag,, (D7 fo,-., D7 far)i]ol < 13— 1
— rankpq, (m(%),...,m(%)) ] < 1}
< rank,, {(DV(jiEg),...,DV(%‘(%(f))) ily| < 1}

= rank e, {(DY(A1(E)).. .. DY (Ap, o (B)): ] < 1} — 1.

For each R° = {r{,...,r0, 1} C {1,...,q} with rankp{Q;}icre = fR° =
n+1, set

Wio = det (DY Qo (£)(1 < v < nt1), DV T(£)(1 <1 < Hy(d)=n—=1)) . _pp -

Since rankp{[Q0](1 < v <n+1),[T}](1 <1 < Hy(d) —n—1)} = Hy(d), there
exists a nonzero constant Cro € F such that Wge = Cgro - W.

We denote by R° the family of all subsets R° of {1,...,q} satisfying
rankp{[Q;]:i € R’} =R’ =n+1.

For each r > 0, there exists R C Q with R = N + 1 such that |Q;(f)|, <
|Q;(f)],. Vi€ R,j ¢ R. We choose R° C R such that R° € R° and R satisfies
BlIENIE .

IEIY a |- Since (;cz Qi = 9, by

|Qi(f)]r 7=
Lemma 2.2, there exists a positive constant a* such that

Lemma 2.1(v) with respect to numbers {

o f]|¢ < max Qi (£)|,-
i€ER

Then, we get

e L PO 114 H(ﬂ’llfllf )
QO 1Qq(OF ~ a% M 1N+t LL\[Qu(E)],
W], -l

e QD)

) Wolr - ]2

Mhie e 1Qi )] T D1 T()],

where Ag, By are positive constants.

< Ap
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Therefore, for every r > 0,

A wi—Ha(V) 1,
el 2T o Wl oW
Q1) -+ - |Qq(F) | B Lier 1Qi®) T D1 1y(8))
Ha(V)
— > KWllogr+o0(1),
j=1
where the maximum is taken over all subsets R C {1,...,q} such that §R =

n + 1 and rankp{[Q:];7 € R} = n + 1. Here, the last inequality comes from
the lemma on logarithmic derivative. By the Poisson-Jensen-Green formula,
the definitions of the approximation function and the characteristic function,
we have

sz"ﬂlf(Qi,’r) —dHy(V)T¢(r) — Nw(0,7) < —=(Hq(V) — 1)logr + O(1),

i=1
(note that Eflzdl(v) |v| < Hy(V) —1). Then, by the first main theorem, we
obtain
3. 1)

Zw, Hy(V))dTy(r) < Zwle(Ql,r) Ny (0,7) — (Hg(V) — 1) logr + O(1).

=1
Claim. 3¢, w;N¢(Qi,7) — Nw(0,7) < 30, wiN¥™(Qi,r) + O(1).
Indeed, set Gj = ged(Q;(f), S(Q;(£))"°). Since w; (1 < i < q) are rational

numbers, there exists an integer A such that @; = Aw; (1 <14 < ¢) are integers.

Let P € &, be an irreducible element with P|[]?_, Q;(f)“:. There exists a
subset R of {1,...,q} with R = N + 1 such that P is not a division of Q;(f)
for any i ¢ R. Denote by e; the largest integer such that P¢|Q;(f) for each
i € R. Then, there is a subset R° C R with {R° =n + 1, Wro # 0 and

Zwi max{0,e; — ko } < Z max{0,e; — Ko}
i€R i€R?

Also, since W = Cgo - Wgo, it clear that P divides W with multiplicity at least

oy Z min{0, e; — [%¢|} > Z min{0, e; — Ko}

i€RY
> E w; max{0,e; — Ko}
i€ER

= Zwi(ei — min{e;, ko }).

i€ER

s Jn+1}C{1 .....
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This implies that
PZLER @ieq |WA A PzieR @; min{e; ko } .
We note that P& min{eiso} |G Therefore,
prier@eqw A T G5
i€R
This holds for every such irreducible element P. Then it yields that

q

[T w Tl e.

i=1 i=1
Hence,
q q ]
STNHQir) < N (0,7) + 3 NP Qi)
i=1 i=1
The claim is proved.
From the claim, Lemma 2.1(ii) and the inequality (3.1), we obtain
(W@g—2N+n—1)— Hy(V)+n+1)dTs(r)
4
<> wiNF Qi 1) = (Ha(V) = 1) logr + O(1).
i=1
n+1

Note that, w; < @(1 <i < q) and s < © <

OIN—n+1 = Then, the above

=E

inequality implies that

(q (2N —n+ 1)Hy(V) ) i(_llv(rm) Q. r)_wlogr+0(l).

n+1 nd

The theorem is proved.

Proof. [Proof of Theorem 1.2] For r > 0, without loss of generality, we may
assume that

QD) 489 < |Qa(F)]}/ 4892 < - <[Qq ()], deB 9.

Since ﬂfg{l i = &, by Lemma 2.2, there exists a positive constant C' such
that

Ol < 1< <N+1 Qi (F)|1/ 498 Q1 = | Qi (F)[/ o8t
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Then, we get

my(Qur) _ [E
Z de @i % @ OF = g O
£l
<t [ L o)
-3 vow
<N -Tf(r) +O(1).
Therefore,
q
= NTe) <3 5 r)+0(1) (r>0).

=1

The theorem is proved.
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