Truncated second main theorem for non-Archimedean meromorphic maps

Si Duc Quang (Hanoi, Vietnam)

(Received Dec. 10, 2022)

Abstract. Let \mathbb{F} be an algebraically closed field of characteristic $p \geq 0$, which is complete with respect to a non-Archimedean absolute value. Let V be a projective subvariety of $\mathbb{P}^M(\mathbb{F})$. In this paper, we will prove some second main theorems for non-Archimedean meromorphic maps of \mathbb{F}^m into V intersecting a family of hypersurfaces in N-subgeneral position with truncated counting functions.

1. Introduction and Main results

Let $\mathbb F$ be an algebraically closed field of characteristic $p\geq 0$, which is complete with respect to a non-Archimedean absolute value. Let $N\geq n$ and $q\geq N+1$. Let H_1,\ldots,H_q be hyperplanes in $\mathbb P^n(\mathbb F)$. The family of hyperplanes $\{H_1\}_{i=1}^q$ is said to be in N-subgeneral position in $\mathbb P^n(\mathbb F)$ if $H_{j_0}\cap\cdots\cap H_{j_N}=\varnothing$ for every $1\leq j_0<\cdots< j_N\leq q$.

In 2017, Yan [6] proved a truncated second main theorem for a non-Archimedean meromorphic map into $\mathbb{P}^n(\mathbb{F})$ with a family of hyperplanes in subgeneral position. With the standart notations on the Nevanlinna theory for non-Archimedean meromorphic maps, his result is stated as follows.

Theorem A (cf. [6, Theorem 4.6]) Let \mathbb{F} be an algebraically closed field of characteristic $p \geq 0$, which is complete with respect to a non-Archimedean absolute value. Let $f: \mathbb{F}^m \to \mathbb{P}^n(\mathbb{F})$ be a linearly non-degenerate non-Archimedean

 $Key\ words\ and\ phrases:$ non-Archimedean, second main theorem, meromorphic mapping, Nevanlinna, hypersurface, subgeneral position.

2020 Mathematics Subject Classification: Primary 11S80, 11J97; Secondary 32H30

meromorphic map with index of independence s and rank f = k. Let H_1, \ldots, H_q be hyperplanes in $\mathbb{P}^n(\mathbb{F})$ in N-subgeneral position $(N \geq n)$. Then, for all $r \geq 1$,

$$(q-2N+n-1)T_f(r) \le \sum_{i=1}^q N_f^{(a)}(H_i,r) - \frac{N+1}{n+1}\log r + O(1),$$

where

$$a = \begin{cases} p^{s-1}(n-k+1) & \text{if } p > 0, \\ n-k+1 & \text{if } p = 0. \end{cases}$$

Here, the index of independence s and the rank f are defined in Section 2 (Definition 2.1).

Also, in 2017, An and Quang [2] proved a truncated second main theorem for meromorphic mappings from \mathbb{C}^m into a projective variety $V \subset \mathbb{P}^M(\mathbb{C})$ with hypersurfaces. Motivated by the methods of Yan [6] and An-Quang [2], our aim in this article is to generalize Theorem A to the case where the map f is from \mathbb{F}^m into an arbitrary projective variety V of dimension n in $\mathbb{P}^M(\mathbb{F})$ and the hyperplanes are replaced by hypersurfaces of $\mathbb{P}^M(\mathbb{F})$ in N-subgeneral position with respect to V.

Firstly, we give the following definitions.

Definition B. Let V be a projective subvariety of $\mathbb{P}^M(\mathbb{F})$ of dimension n $(n \leq M)$. Let Q_1, \ldots, Q_q $(q \geq n+1)$ be q hypersurfaces in $\mathbb{P}^M(\mathbb{F})$. The family of hypersurfaces $\{Q_i\}_{i=1}^q$ is said to be in N-subgeneral position with respect to V if

$$V \cap (\bigcap_{j=1}^{N+1} Q_{i_j}) = \varnothing \text{ for any } 1 \le i_1 < \dots < i_{N+1} \le q.$$

If N = n, we just say $\{Q_i\}_{i=1}^q$ is in general position with respect to V.

Now, let V be as above and let d be a positive integer. We denote by I(V) the ideal of homogeneous polynomials in $\mathbb{F}[x_0,\ldots,x_M]$ defining V and by H_d the \mathbb{F} -vector space of all homogeneous polynomials in $\mathbb{F}[x_0,\ldots,x_M]$ of degree d. Define

$$I_d(V) := \frac{H_d}{I(V) \cap H_d} \text{ and } H_V(d) := \dim_{\mathbb{F}} \! I_d(V).$$

Then $H_V(d)$ is called the Hilbert function of V. Each element of $I_d(V)$ which is an equivalent class of an element $Q \in H_d$, will be denoted by [Q],

Definition C. Let $f: \mathbb{F}^m \to V$ be a non-Archimedean meromorphic map with a reduced representation $\mathbf{f} = (f_0, \dots, f_M)$. We say that f is degenerate over $I_d(V)$ if there is $[Q] \in I_d(V) \setminus \{0\}$ such that $Q(\mathbf{f}) \equiv 0$. Otherwise, we say that f is non-degenerate over $I_d(V)$.

We will generalize Theorem A to the following.

Theorem 1.1. Let V be a projective subvariety of $\mathbb{P}^M(\mathbb{F})$ of dimension n $(n \leq M)$. Let $\{Q_i\}_{i=1}^q$ be hypersurfaces of $\mathbb{P}^M(\mathbb{F})$ in N-subgeneral position with respect to V with $\deg Q_i = d_i$ $(1 \leq i \leq q)$. Let d be the least common multiple of d_i' s. Let f be a non-Archimedean meromorphic map of \mathbb{F}^m into V, which is non-degenerate over $I_d(V)$ with the d^{th} -index of non-degeneracy s and rank f = k. Then, for all $r \geq 1$,

$$\left(q - \frac{(2N+n-1)H_d(V)}{n+1}\right)T_f(r) \leq \sum_{i=1}^q \frac{1}{d_i}N_f^{(\kappa_0)}(Q_i,r) - \frac{N(H_d(V)-1)}{nd}\log r + O(1),$$

where

$$\kappa_0 = \begin{cases} p^{s-1}(H_d(V) - k) & \text{if } p > 0, \\ H_d(V) - k & \text{if } p = 0. \end{cases}$$

Here, the d^{th} -index of non-degeneracy s is defined in Section 2 (Definition 2.1). Note that, in the case where $V = \mathbb{P}^n(\mathbb{C}), d = 1, H_d(V) = n+1$, our result will give back Theorem A.

For the case of counting function without truncation level, we will prove the following.

Theorem 1.2. Let V be a arbitrary projective subvariety of $\mathbb{P}^M(\mathbb{F})$. Let $\{Q_i\}_{i=1}^q$ be hypersurfaces of $\mathbb{P}^M(\mathbb{F})$ in N-subgeneral position with respect to V. Let f be a non-constant non-Archimedean meromorphic map of \mathbb{F}^m into V. Then, for any r > 0,

$$(q-N)T_f(r) \le \sum_{i=1}^q \frac{1}{\deg Q_i} N_f(Q_i, r) + O(1),$$

where the quantity O(1) depends only on $\{Q_i\}_{i=1}^q$.

We see that, the above result is a generalization of the previous results in [1, 5].

2. Basic notions and auxiliary results

In this section, we will recall some basic notions from Nevanlinna theory for non-Archimedean meromorphic maps due to Cherry-Ye [3] and Yan [6].

2.1. Non-Archimedean meromorphic function. Let \mathbb{F} be an algebraically closed field of characteristic p, complete with respect to a non-Archimedean

absolute value $|\cdot|$. We set $||z|| = \max_{1 \le i \le m} |z_i|$ for $z = (z_1, \dots, z_m) \in \mathbb{F}^m$ and define

$$\mathbb{B}^{m}(r) := \{ z \in \mathbb{F}^{m}; ||z|| < r \}.$$

For a multi-index $\gamma = (\gamma_1, \dots, \gamma_m) \in \mathbb{Z}_{>0}^m$, define

$$z^{\gamma} = z_1^{\gamma_1} \cdots z_m^{\gamma_m}, \ |\gamma| = \gamma_1 + \cdots + \gamma_m, \ \gamma! = \gamma! \cdots \gamma_m!.$$

For an analytic function f on \mathbb{F}^m (i.e., entire function) given by a formal power series

$$f = \sum_{\gamma} a_{\gamma} z^{\gamma}$$

with $a_{\gamma} \in \mathbb{F}$ such that $\lim_{|\gamma| \to \infty} |a_{\gamma}| r^{|\gamma|} = 0 \ (\forall r \in \mathbb{F}^* = \mathbb{F} \setminus \{0\})$, define

$$|f|_r = \sup_{\gamma} |a_{\gamma}| r^{|\gamma|}.$$

We denote by \mathcal{E}_m the ring of all analytic functions on \mathbb{F}^m .

We define a meromorphic function f on \mathbb{F}^m to be the quotient of two analytic functions $g,h\in\mathcal{E}_m$ such that g and h have no common factors in \mathcal{E}_m , i.e., $f=\frac{g}{h}$. We define

$$|f|_r = \frac{|g|_r}{|h|_r}.$$

We denote by \mathcal{M}_m the field of all meromorphic functions on \mathbb{F}^m , which is the fractional field of \mathcal{E}_m .

2.2. Derivatives and Hasse derivatives. For a meromorphic function $f \in \mathcal{M}_m$ and a multi-index $\gamma = (\gamma_1, \dots, \gamma_m)$, we set

$$\partial^{\gamma} f = \frac{\partial^{|\gamma|} f}{\partial z_1^{\gamma_1} \cdots \partial z_m^{\gamma_m}}.$$

Let $\alpha = (\alpha_1, \dots, \alpha_m)$ and $\beta = (\beta_1, \dots, \beta_m)$ be multi-indices. We say that $\alpha \geq \beta$ if $\alpha_i \geq \beta_i$ for all $i = 1, \dots, m$. If $\alpha \geq \beta$, we define

$$\alpha - \beta = (\alpha_1 - \beta_1, \dots, \alpha_m - \beta_m), \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \cdots \begin{pmatrix} \alpha_m \\ \beta_m \end{pmatrix}.$$

For an analytic function $f = \sum_{\alpha} a_{\alpha} z^{\alpha}$ and a multi-index γ , we define the Hasse derivative of multi-index γ of f by

$$D^{\gamma} f = \sum_{\alpha \ge \gamma} \binom{\alpha}{\gamma} a_{\alpha} z^{\alpha - \gamma}.$$

We may verify that $D^{\alpha}D^{\beta}f = {\alpha+\beta \choose \beta}D^{\alpha+\beta}$ for all $f \in \mathcal{E}_m$. Therefore, the Hasse derivative D can be extended to meromorphic functions in the following way:

- For a multi-index $e_i = (0, \dots, 0, \frac{1}{j^{th} position}, 0, \dots, 0)$, we set $D_j^k f := D^{ke_i}(f)$.
- For a meromorphic function $f = \frac{g}{h}$ $(g, h \in \mathcal{E}_m)$, we define

$$D^{e_i} = D_j^1 f := \frac{h D_i^1 g - g D_i^1 h}{h^2}, \ j = 1, \dots, m.$$

• For $\gamma=(\gamma_1,\ldots,\gamma_m)$, we may choose a sequence of multi-indices $\gamma=\alpha^1>\alpha^2>\cdots>\alpha^{|\gamma|}$ such that $\alpha^i=\alpha^{i+1}+e_{j_i}$ $(j_i\in\{1,\ldots,m\})$ for $1\leq i\leq |\gamma|-1$ and $\alpha^{|\gamma|}=e_{j_{|\gamma|}}$ $(j_{|\gamma|}\in\{1,\ldots,m\})$ and define

$$D^{\alpha_i} h = \frac{1}{\binom{\alpha_{i+1} + e_{j_i}}{\alpha_{i+1}}} D^{e_{j_i}} D^{\alpha_{i+1}} h, \forall i = |\gamma| - 1, |\gamma| - 2, \dots, 1.$$

We summarize here the fundamental properties of the Hasse derivative from [6] as follows:

- (i) $D^{\gamma}(f+g) = D^{\gamma}f + D^{\gamma}g, \ f, g \in \mathcal{M}_m.$
- (ii) $D^{\gamma}(fg) = \sum_{\alpha,\beta} D^{\alpha} f D^{\beta} g, \ f, g \in \mathcal{M}_m.$
- (iii) $D^{\alpha}D^{\beta}f = {\alpha+\beta \choose \beta}D^{\alpha+\beta}f, f \in \mathcal{M}_m$
- (iv) (Lemma on the logarithmic derivative) For $f \in \mathcal{E}_m$,

$$|D^{\gamma}f|_r \le \frac{|f|_r}{r^{|\gamma|}}, |\partial^{\gamma}f|_r \le \frac{|f|_r}{r^{|\gamma|}}.$$

(v) For $f \in \mathcal{E}_m$ and a multi-index γ , let P be an irreducible element of \mathcal{E}_m that divides f with exact multiplicity e. If $e > |\gamma|$, then $P^{e-|\gamma|}$ divides $D^{\gamma}f$.

For each integer k > 2, let

$$\mathcal{M}_m[k] = \{ Q \in \mathcal{M}_m : D_i^i Q \equiv 0 \text{ for all } 0 < i < k \text{ and } 1 \le j \le m \}.$$

If F has characteristic 0, then $\mathcal{M}_m[k] = \mathbb{F}$ for all $k \geq 2$. If \mathbb{F} has characteristic p > 0 and if $s \geq 1$ is an integer, then $\mathcal{M}_m[p^s]$ is the fraction field of \mathcal{E}_m , where $\mathcal{E}_m[p^s] = \{g^{p^s} : g \in \mathcal{E}_m\}$ is a subring of \mathcal{E}_m . Moreover,

$$\mathcal{M}_m[p^{s-1}+1] = \mathcal{M}_m[p^s].$$

2.3. Non-Archimedean Nevanlinna's function.

Let $f = \sum_{\gamma} a_{\gamma} z^{\gamma} \in \mathcal{E}_m$ be an holomorphic function. The counting function of zeros of f is defined as follows:

$$N_f(0,r) = n_f(0,0)\log r + \int_0^r (n_f(0,t) - n_f(0,0)) \frac{dt}{t} \ (r > 0),$$

where

$$n_f(0,r) = \sup\{|\gamma|; |a_{\gamma}|r^{|\gamma|} = |f|_r\} \text{ and } n_f(0,0) = \min\{|\gamma|; a_{\gamma} \neq 0\}.$$

Let f be a meromorphic function on \mathbb{F}^m . Assume that $f = \frac{g}{h}$, where g, h are holomorphic functions without common factors. We define

$$N_f(0,r) = N_g(0,r)$$
 and $N_f(\infty,r) = N_h(0,r)$.

The Poisson-Jensen-Green formula (see [3, Theorem 3.1]) states that

$$N_f(0,r) - N_f(\infty,r) = \log |f|_r + C_f$$
 for all $r > 0$,

where C_f is a constant depending on f but not on r.

Suppose that $f \not\equiv a$ for $a \in \mathbb{F}$. The counting function of f with respect to the point a is defined by

$$N_f(a,r) = N_{f-a}(0,r).$$

The proximity functions of f with respect to ∞ and a are defined respectively as follows

$$m_f(\infty, r) = \max\{0, \log |f|_r\} = \log^+ |f|_r \text{ and } m_f(a, r) = m_{1/(f-a)}(\infty, r).$$

The characteristic function of f is defined by

$$T_f(r) = m_f(\infty, r) + N_f(\infty, r).$$

Note that, if $f = \frac{g}{h}$ as above then $T_f(r) = \max\{\log |g|_r, \log |h|_r\} + O(1)$.

The first main theorem is stated as follows:

$$T_f(r) = m_f(a, r) + N_f(a, r) + O(1) \ (\forall r > 0).$$

2.4. Truncated counting function.

Let $f \in \mathcal{E}_m$. For $j = 1, \ldots, m$, define

$$g_j = \gcd(f, D_j^1(f))$$
 and $h_j = \frac{f}{g_j}$.

The radical R(f) of f is defined to be the least common multiple of h_j 's.

Case 1: \mathbb{F} has characteristic p=0. The truncated counting function of zeros of f is defined by

$$N_f^{(l)}(0,r) = N_{\gcd(f,R(f)^l)}(0,r).$$

In particular,

$$N_f^{(1)}(0,r) = N_{R(f)}(0,r).$$

Case 2: \mathbb{F} has characteristic p>0. We define $R_{p^s}(f)$ by induction in $s=0,1,\ldots$ For s=0, set $R_{p^0}(f)=R(f)$. For $s\geq 1$, assume that $R_{p^{s-1}}(f)$ has been defined. We set

$$\overline{f} = \frac{f}{\gcd(f, R_{p^{s-1}}(f)^{p^s})}, \ g_i = \gcd(\overline{f}, D_i^{p^s} \overline{f}), \ h_i = \frac{\overline{f}}{g_i}$$

for i = 1, ..., m. Let H be the least common multiple of h_i 's, and set

$$G = \frac{H}{\gcd(H, R_{p^{s-1}}(H)^{p^{s-1}})},$$

which is a p^s th power. Let R be the p^s th root of G and define the higher p^s -radical $R_{p^s}(f)$ of f to be the least common multiple of $R_{p^{s-1}}(f)$ and R.

Take a sequence $\{r_j\}_{i\in\mathbb{N}}\subset |\mathbb{F}^*|$ such that $r_j\to\infty$. Take s_j such that if $P\in\mathcal{E}_m$ is irreducible such that P|f and P is not unit on $\mathbb{B}^m(r_j)$ then $P|R_{p^s}(f)$ for $s>s_j$. Let u_j be a unit on $\mathbb{B}^m(r_j)$ such that

$$R_{p^{s_j}}(f) = u_j R_{p^{s_{j+1}}}(f).$$

Define $v_j = \prod_{l=j}^{\infty} u_j$, which is unit on $\mathbb{B}^m(r_j)$, and

$$S(f) = \lim_{j \to \infty} \frac{R_{p^{s_j}}(f)}{v_j} \in \mathcal{E}_m,$$

which is called the square free part of f. The truncated (to level l) counting function of zeros of f is defined by

$$N_f^{(l)}(0,r) = N_{\gcd(f,S(f)^l)}(0,r).$$

2.5. Non-Archimedean meromorphic maps and family of hypersurfaces.

Let V be a projective subvariety of $\mathbb{P}^M(\mathbb{F})$ of dimension n $(n \leq M)$. For a positive integer d, take a basis $\{[A_1], \ldots, [A_{H_d(V)}]\}$ of $I_d(V)$, where $A_i \in \mathcal{H}_d[x_0, \ldots, x_M]$. Let $f: \mathbb{F}^m \to \mathbb{P}^M(\mathbb{F})$ be a non-Archimedean meromorphic map with a reduced representation $\mathbf{f} = (f_0, \ldots, f_M)$, which is non-degenerate over $I_d(V)$. We have the following definition.

Definition 2.1. Assume that \mathbb{F} has the character p > 0. Denote by s the smallest integer such that any subset of $\{A_1(\mathbf{f}), \ldots, A_{H_d(V)}(\mathbf{f})\}$ linearly independent over \mathbb{F} remains linearly independent over $\mathcal{M}_m[p^s]$. We call s is the d^{th} -index of non-degeneracy of f.

We see that the above definition does not depend on the choice of the basis $\{[A_i]; 1 \leq i \leq H_d(V)\}$ and the choice of the reduced representation \mathbf{f} . If $V = \mathbb{P}^M(\mathbb{F})$ and d = 1 then s is also called the index of independence of f (see [6, Definition 4.1]).

The following three lemmas are proved in [2] for the case of $\mathbb{F}=\mathbb{C}$ and the canonical absolute value. However, with the same proof, they also hold for arbitrary algebraic closed field \mathbb{F} of character $p\geq 0$ and complete with an arbitrary absolute value. We state them here without the proofs.

Throughout this paper, we sometimes identify each hypersurface in a projective variety with its defining homogeneous polynomial. The following lemma of An-Quang [2] may be considered as a generalization of the lemma on Nochka weights in [4].

Lemma 2.1 (cf. [2, Lemma 3]). Let V be a projective subvariety of $\mathbb{P}^M(\mathbb{F})$ of dimension n $(n \leq M)$. Let Q_1, \ldots, Q_q be q (q > 2N - k + 1) hypersurfaces in $\mathbb{P}^M(\mathbb{F})$ in N-subgeneral position with respect to V of the common degree d. Then there are positive rational constants ω_i $(1 \leq i \leq q)$ satisfying the following:

- $i) \ 0 < \omega_i \le 1, \ \forall i \in \{1, \dots, q\},\$
- ii) Setting $\tilde{\omega} = \max_{i \in Q} \omega_i$, one gets

$$\sum_{j=1}^{q} \omega_j = \tilde{\omega}(q - 2N + n - 1) + n + 1.$$

$$iii) \ \frac{n+1}{2N-n+1} \le \tilde{\omega} \le \frac{n}{N}.$$

- iv) For $R \subset \{1, ..., q\}$ with $\sharp R = N + 1$, then $\sum_{i \in R} \omega_i \leq n + 1$.
- v) Let $E_i \geq 1$ $(1 \leq i \leq q)$ be arbitrarily given numbers. For $R \subset \{1, \ldots, q\}$ with $\sharp R = N+1$, there is a subset $R^o \subset R$ such that $\sharp R^o = \operatorname{rank}_{\mathbb{F}}\{[Q_i]; i \in R^o\} = n+1$ and

$$\prod_{i \in R} E_i^{\omega_i} \le \prod_{i \in R^o} E_i.$$

Let Q be a hypersurface in $\mathbb{P}^n(\mathbb{F})$ of degree d defined by $\sum_{I\in\mathcal{I}_d}a_Ix^I=0$, where $\mathcal{I}_d=\{(i_0,\ldots,i_M)\in\mathbb{N}_0^{M+1}\,:\,i_0+\cdots+i_M=d\},\,I=(i_0,\ldots,i_M)\in\mathcal{I}_d,\,x^I=x_0^{i_0}\cdots x_M^{i_M}\text{ and }(x_0:\cdots:x_M)\text{ is homogeneous coordinates of }\mathbb{P}^M(\mathbb{F}).$ Let f be an non-Archimedean meromorphic map from \mathbb{F}^m into a projective subvariety V of $\mathbb{P}^M(\mathbb{F})$ with a reduced representation $\mathbf{f}=(f_0,\ldots,f_M)$. We define

$$Q(\mathbf{f}) = \sum_{I \in \mathcal{I}_d} a_I f^I,$$

where $f^I = f_0^{i_0} \cdots f_n^{i_n}$ for $I = (i_0, \dots, i_n)$. We have the following lemma.

Lemma 2.2 (cf. [2, Lemma 4]). Let $\{Q_i\}_{i\in R}$ be a set of hypersurfaces in $\mathbb{P}^n(\mathbb{F})$ of the common degree d and let f be a meromorphic mapping of \mathbb{F}^m into $\mathbb{P}^n(\mathbb{F})$ with a reduced representation $\mathbf{f} = (f_0, \ldots, f_M)$. Assume that $\bigcap_{i\in R} Q_i \cap V = \varnothing$. Then, there exist positive constants α and β such that

$$\alpha \|\mathbf{f}\|_r^d \le \max_{i \in R} |Q_i(\mathbf{f})|_r \le \beta \|\mathbf{f}\|_r^d \text{ for any } r > 0.$$

Lemma 2.3 (cf. [2, Lemma 5]). Let $\{Q_i\}_{i=1}^q$ be a set of q hypersurfaces in $\mathbb{P}^M(\mathbb{F})$ of the common degree d. Then there exist $(H_V(d)-n-1)$ hypersurfaces $\{T_i\}_{i=1}^{H_V(d)-n-1}$ in $\mathbb{P}^M(\mathbb{F})$ such that for any subset $R \in \{1,\ldots,q\}$ with $\sharp R = \mathrm{rank}_{\mathbb{F}}\{[Q_i]; i \in R\} = n+1$, we get $\mathrm{rank}_{\mathbb{F}}\{[Q_i]; i \in R\} \cup \{[T_i]; 1 \leq i \leq H_d(V) - n-1\}\} = H_V(d)$.

2.5. Value distribution theory for non-Archimedean meromorphic maps.

Let $f: \mathbb{F}^m \to V \subset \mathbb{P}^M(\mathbb{F})$ be a non-Archimedean meromorphic map with a reduced representation $\mathbf{f} = (f_0, \dots, f_N)$. The characteristic function of f is defined by

$$T_f(r) = \log \|\mathbf{f}\|_r$$

where $\|\mathbf{f}\|_r = \max_{1 \le 0 \le n} |f_i|_r$. This definition is well-defined upto a constant.

Let Q be a hypersurface in $\mathbb{P}^n(\mathbb{F})$ of degree d defined by $\sum_{I \in \mathcal{I}_d} a_I x^I = 0$, where $a_I \in \mathbb{F}$ $(I \in \mathcal{I}_d)$ and are not all zeros. If $Q(\mathbf{f}) \not\equiv 0$ then we define the proximity function of f with respect to Q by

$$m_f(Q, r) = \log \frac{\|\mathbf{f}\|_r^d \cdot \|Q\|}{|Q(\mathbf{f})|_r},$$

where $||Q|| := \max_{I \in \mathcal{I}_d} |a_I|$. We see that the definition of $m_f(Q, r)$ does not depend on the choices of the presentations of f and Q.

The truncated (to level l) counting function of f with respect to Q is defined by

$$N_f^{(l)}(Q,r) := N_{Q(\mathbf{f})}^{(l)}(0,r).$$

For simplicity, we will omit the character $^{(l)}$ if $l = \infty$.

The first main theorem for non-Archimedean meromorphic maps states that

$$dT_f(r) = m_f(Q, r) + N_f(Q, r) + O(1).$$

Proposition 2.1 (cf. [6, Propositions 4.3, 4.4]). Let p be the character of \mathbb{F} . Assume that $f: \mathbb{F}_m \to \mathbb{P}^n(\mathbb{F})$ is a non-Achimedean meromorphic map, which is

linearly non-degenerate over \mathbb{F} , with a reduced representation $\mathbf{f} = (f_0, \dots, f_n)$. Then there exist multi-indices $\gamma^0 = (0, \dots, 0), \gamma^1, \dots, \gamma^n$ with

$$|\gamma^0| \le \dots \le |\gamma^n| \le \kappa_0 \le \begin{cases} p^{s-1}(n-k+1) & \text{if } p > 0, \\ n-k+1 & \text{if } p = 0 \end{cases}$$

where s is the index of independence of f and $k=\mathrm{rank}f$, such that the generalized Wronskian

$$W_{\gamma^0,\dots,\gamma^n}(f_0,\dots,f_n) = \det\left(D^{\gamma^i}f_j\right)_{0 \le i,j \le n} \not\equiv 0.$$

Here $\operatorname{rank} f$ is defined by

$$\operatorname{rank} f = \operatorname{rank}_{\mathcal{M}_m} \{ (D^{\gamma} f_0, \dots, D^{\gamma} f_n); |\gamma| \le 1 \} - 1.$$

3. Proof of main theorems

Proof. [Proof of Theorem 1.1] By replacing Q_i with Q_i^{d/d_i} if necessary, we may assume that all Q_i $(i=1,\ldots,q)$ do have the same degree d. It is easy to see that there is a positive constant β such that $\beta \|\mathbf{f}\|^d \geq |Q_i(\mathbf{f})|$ for every $1 \leq i \leq q$. Set $Q := \{1,\cdots,q\}$. Let $\{\omega_i\}_{i=1}^q$ be as in Lemma 2.1 for the family $\{Q_i\}_{i=1}^q$. Let $\{T_i\}_{i=1}^{H_d(V)-n-1}$ be $(H_d(V)-n-1)$ hypersurfaces in $\mathbb{P}^M(\mathbb{F})$, which satisfy Lemma 2.3.

Take a \mathbb{F} -basis $\{[A_i]\}_{i=1}^{H_V(d)}$ of $I_d(V)$, where $A_i \in H_d$. Since f is non-degenerate over $I_d(V)$, it implies that $\{A_i(\mathbf{f}); 1 \leq i \leq H_V(d)\}$ is linearly independent over \mathbb{F} . By Proposition 2.1, there multi-indices $\{\gamma^1 = (0, \dots, 0), \gamma^2 \dots, \gamma^{H_V(d)}\} \subset \mathbb{Z}_+^m$ such that $|\gamma^0| \leq \dots \leq |\gamma^{H_d(V)}| \leq \kappa_0$, where

$$\kappa_0 \le \begin{cases} p^{s-1}(H_V(d) - k) & \text{if } p > 0, \\ H_d(V) - k & \text{if } p = 0 \end{cases}$$

and the generalized Wronskian

$$W = \det \left(D^{\gamma^i} A_j(\mathbf{f}) \right)_{1 \le i, j \le H_d(V)} \not\equiv 0.$$

Here, we note that

$$k = \operatorname{rank}_{\mathcal{M}_m} \left\{ (D^{\gamma} f_0, \dots, D^{\gamma} f_M); |\gamma| \leq 1 \right\} - 1$$

$$= \operatorname{rank}_{\mathcal{M}_m} \left\{ \left(D^{\gamma} \left(\frac{f_1}{f_0} \right), \dots, D^{\gamma} \left(\frac{f_M}{f_0} \right) \right); |\gamma| \leq 1 \right\}$$

$$\leq \operatorname{rank}_{\mathcal{M}_m} \left\{ \left(D^{\gamma} \left(\frac{A_2(\mathbf{f})}{A_1(\mathbf{f})} \right), \dots, D^{\gamma} \left(\frac{A_{H_d(V)}(\mathbf{f})}{A_1(\mathbf{f})} \right) \right); |\gamma| \leq 1 \right\}$$

$$= \operatorname{rank}_{\mathcal{M}_m} \left\{ (D^{\gamma} (A_1(\mathbf{f})), \dots, D^{\gamma} (A_{H_d(V)}(\mathbf{f}))); |\gamma| \leq 1 \right\} - 1.$$

For each $R^o = \{r_1^0, \dots, r_{n+1}^0\} \subset \{1, \dots, q\}$ with ${\rm rank}_{\mathbb{F}}\{Q_i\}_{i \in R^o} = \sharp R^o = n+1$, set

$$W_{R^o} \equiv \det(D^{\gamma^j} Q_{r_v^0}(\mathbf{f})(1 \le v \le n+1), D^{\gamma^j} T_l(\mathbf{f})(1 \le l \le H_V(d) - n - 1))_{1 \le j \le H_V(d)}.$$

Since $\operatorname{rank}_{\mathbb{F}}\{[Q_{r_v^0}](1\leq v\leq n+1), [T_l](1\leq l\leq H_V(d)-n-1)\}=H_V(d)$, there exists a nonzero constant $C_{R^o}\in\mathbb{F}$ such that $W_{R^o}=C_{R^o}\cdot W$.

We denote by \mathbb{R}^o the family of all subsets \mathbb{R}^o of $\{1,\ldots,q\}$ satisfying

$$\operatorname{rank}_{\mathbb{F}}\{[Q_i]; i \in R^o\} = \sharp R^o = n+1.$$

For each r > 0, there exists $\bar{R} \subset Q$ with $\sharp \bar{R} = N + 1$ such that $|Q_i(\mathbf{f})|_r \le |Q_j(\mathbf{f})|_r, \forall i \in \bar{R}, j \notin \bar{R}$. We choose $R^o \subset R$ such that $R^o \in \mathcal{R}^o$ and R^o satisfies Lemma 2.1(v) with respect to numbers $\left\{\frac{\beta \|\mathbf{f}\|_r^d}{|Q_i(\mathbf{f})|_r}\right\}_{i=1}^q$. Since $\bigcap_{i \in \bar{R}} Q_i = \emptyset$, by Lemma 2.2, there exists a positive constant $\alpha^{\bar{R}}$ such that

$$\alpha^{\bar{R}} \|\mathbf{f}\|_r^d \le \max_{i \in \bar{R}} |Q_i(\mathbf{f})|_r.$$

Then, we get

$$\begin{split} \frac{\|\mathbf{f}\|_{r}^{d(\sum_{i=1}^{q}\omega_{i})}|W|_{r}}{|Q_{1}(\mathbf{f})|_{r}^{\omega_{1}}\cdots|Q_{q}(\mathbf{f})|_{r}^{\omega_{q}}} &\leq \frac{|W|_{r}}{\alpha_{\bar{R}}^{q-N-1}\beta^{N+1}} \prod_{i\in\bar{R}} \left(\frac{\beta\|\mathbf{f}\|_{r}^{d}}{|Q_{i}(\mathbf{f})|_{r}}\right)^{\omega_{i}} \\ &\leq A_{\bar{R}} \frac{|W|_{r}\cdot\|\mathbf{f}\|_{r}^{d(n+1)}}{\prod_{i\in\bar{R}^{o}}|Q_{i}(\mathbf{f})|_{r}} \\ &\leq B_{\bar{R}} \frac{|W_{\bar{R}^{o}}|_{r}\cdot\|\mathbf{f}\|_{r}^{d(n+1)}}{\prod_{i\in\bar{R}^{o}}|Q_{i}(\mathbf{f})|_{r} \prod_{i=1}^{dH_{V}(d)}} \end{split}$$

where $A_{\bar{R}}, B_{\bar{R}}$ are positive constants.

Therefore, for every r > 0,

$$\log \frac{\|\mathbf{f}\|_{r}^{d(\sum_{i=1}^{q} \omega_{i} - H_{d}(V)} |W|_{r}}{|Q_{1}(\mathbf{f})|_{r}^{\omega_{1}} \cdots |Q_{q}(\mathbf{f})|_{r}^{\omega_{q}}} \leq \max_{R} \log \frac{|W_{R}|_{r}}{\prod_{i \in R} |Q_{i}(\mathbf{f})|_{r} \prod_{i=1}^{H_{V}(d) - n - 1} |T_{i}(\mathbf{f})|_{r}} + O(1)$$

$$\leq -\sum_{j=1}^{H_{d}(V)} |\gamma^{j}| \log r + O(1),$$

where the maximum is taken over all subsets $R \subset \{1, \ldots, q\}$ such that $\sharp R = n+1$ and $\mathrm{rank}_{\mathbb{F}}\{[Q_i]; i \in R\} = n+1$. Here, the last inequality comes from the lemma on logarithmic derivative. By the Poisson-Jensen-Green formula, the definitions of the approximation function and the characteristic function, we have

$$\sum_{i=1}^{q} \omega_i m_f(Q_i, r) - dH_d(V) T_f(r) - N_W(0, r) \le -(H_d(V) - 1) \log r + O(1),$$

(note that $\sum_{i=1}^{H_d(V)} |\gamma^i| \leq H_d(V) - 1$). Then, by the first main theorem, we obtain

$$(3.1) \left(\sum_{i=1}^{q} \omega_i - H_d(V) \right) dT_f(r) \le \sum_{i=1}^{q} \omega_i N_f(Q_i, r) - N_W(0, r) - (H_d(V) - 1) \log r + O(1).$$

Claim.
$$\sum_{i=1}^{q} \omega_i N_f(Q_i, r) - N_W(0, r) \leq \sum_{i=1}^{q} \omega_i N_f^{(\kappa_0)}(Q_i, r) + O(1)$$
.

Indeed, set $\tilde{G}_j = \gcd(Q_j(\mathbf{f}), S(Q_j(\mathbf{f}))^{\kappa_0})$. Since ω_i $(1 \leq i \leq q)$ are rational numbers, there exists an integer A such that $\tilde{\omega}_i = A\omega_i$ $(1 \leq i \leq q)$ are integers.

Let $P \in \mathcal{E}_m$ be an irreducible element with $P | \prod_{i=1}^q Q_i(\mathbf{f})^{\tilde{\omega}_i}$. There exists a subset R of $\{1, \ldots, q\}$ with $\sharp R = N+1$ such that P is not a division of $Q_i(\mathbf{f})$ for any $i \notin R$. Denote by e_i the largest integer such that $P^{e_i}|Q_i(\mathbf{f})$ for each $i \in R$. Then, there is a subset $R^o \subset R$ with $\sharp R^o = n+1$, $W_{R^o} \not\equiv 0$ and

$$\sum_{i \in R} \omega_i \max\{0, e_i - \kappa_0\} \le \sum_{i \in R^o} \max\{0, e_i - \kappa_0\}.$$

Also, since $W = C_{R^o} \cdot W_{R^o}$, it clear that P divides W with multiplicity at least

$$\begin{split} \min_{\{j_1,...,j_{n+1}\}\subset\{1,...,H_d(V)\}} \sum_{i\in R^0} \min\{0,e_i - |\gamma^{j_i}|\} &\geq \sum_{i\in R^0} \min\{0,e_i - \kappa_0\} \\ &\geq \sum_{i\in R} \omega_i \max\{0,e_i - \kappa_0\} \\ &= \sum_{i\in R} \omega_i (e_i - \min\{e_i,\kappa_0\}). \end{split}$$

This implies that

$$P^{\sum_{i\in R} \tilde{\omega}_i e_i} | W^A \cdot P^{\sum_{i\in R} \tilde{\omega}_i \min\{e_i, \kappa_0\}}.$$

We note that $P^{\tilde{\omega}_i \min\{e_i, \kappa_0\}} | G_i^{\tilde{\omega}_i}$. Therefore,

$$P^{\sum_{i\in R}\tilde{\omega}_i e_i}|W^A\cdot\prod_{i\in R}G_i^{\tilde{\omega}_i}.$$

This holds for every such irreducible element P. Then it yields that

$$\prod_{i=1}^{q} Q_i(\mathbf{f})^{\tilde{\omega}_i} | W^A \cdot \prod_{i=1}^{q} G_i^{\tilde{\omega}_i}.$$

Hence,

$$\sum_{i=1}^{q} N_f(Q_i, r) \le N_W(0, r) + \sum_{i=1}^{q} N_f^{(\kappa_0)}(Q_i, r).$$

The claim is proved.

From the claim, Lemma 2.1(ii) and the inequality (3.1), we obtain

$$(\tilde{\omega}(q-2N+n-1) - H_d(V) + n+1)dT_f(r)$$

$$\leq \sum_{i=1}^q \omega_i N_f^{(\kappa_0)}(Q_i, r) - (H_d(V) - 1)\log r + O(1).$$

Note that, $\omega_i \leq \tilde{\omega}(1 \leq i \leq q)$ and $\frac{n+1}{2N-n+1} \leq \tilde{\omega} \leq \frac{n}{N}$. Then, the above inequality implies that

$$\left(q - \frac{(2N - n + 1)H_d(V)}{n + 1}\right) \le \sum_{i=1}^q \frac{1}{d} N_f^{(\kappa_0)}(Q_i, r) - \frac{N(H_d(V) - 1)}{nd} \log r + O(1).$$

The theorem is proved.

Proof. [Proof of Theorem 1.2] For r > 0, without loss of generality, we may assume that

$$|Q_1(\mathbf{f})|_r^{1/\deg Q_1} \le |Q_2(\mathbf{f})|_r^{1/\deg Q_2} \le \dots \le |Q_q(\mathbf{f})|_r^{1/\deg Q_{N+1}}.$$

Since $\bigcap_{i=1}^{N+1} Q_i = \emptyset$, by Lemma 2.2, there exists a positive constant C such that

$$C \|\mathbf{f}\|_r \le \max_{1 \le i \le N+1} |Q_i(\mathbf{f})|_r^{1/\deg Q_i} = |Q_{N+1}(\mathbf{f})|_r^{1/\deg Q_{N+1}}.$$

Then, we get

$$\sum_{i=1}^{q} \frac{m_f(Q_i, r)}{\deg Q_i} = \log \frac{\|\mathbf{f}\|_r^q}{|Q_1(\mathbf{f})|_r^{1/\deg Q_1} \cdots |Q_q(\mathbf{f})|_r^{1/\deg Q_q}} + O(1)$$

$$\leq \log \prod_{i=1}^{N} \frac{\|\mathbf{f}\|_r}{|Q_i(\mathbf{f})|_r^{1/\deg Q_i}} + O(1)$$

$$= \sum_{i=1}^{N} \frac{m_f(Q_i, r)}{\deg Q_i} + O(1)$$

$$\leq N \cdot T_f(r) + O(1).$$

Therefore,

$$(q-N)T_f(r) \le \sum_{i=1}^q \frac{1}{\deg Q_i} N_f(Q_i, r) + O(1) \quad (r>0).$$

The theorem is proved.

References

- [1] T. T. H. An A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), 1255–1261.
- [2] D. P. An, S. D. Quang Second main theorem and unicity of meromorphic mappings for hypersurfaces in projective varieties, Acta Math. Vietnamica 42 (2017), 455–470.
- [3] W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. **349** (1997), 5043–5071.
- [4] E. I. Nochka, On the theory of meromorphic functions, Sov. Math. Dokl. **27** (1983), 377–381.
- [5] M. Ru, A note on p-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), 1263–1269.

[6] Q. Yan, Truncated second main theorems and uniqueness theorems for non-Archimedean meromorphic maps, Ann. Polon. Math. 119 (2017), 165–193

Si Duc Quang

Department of Mathematics Hanoi National University of Education 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam quangsd@hnue.edu.vn