Sách/BookAuthors: Robert Crowe (2024)
This book provides four in-depth sections that cover all aspects of machine learning engineering: Data: collecting, labeling, validating, automation, and data preprocessing; data feature engineering and selection; data journey and storage Modeling: high performance modeling; model resource management techniques; model analysis and interoperability; neural architecture search Deployment: model serving patterns and infrastructure for ML models and LLMs; management and delivery; monitoring and logging Productionalizing: ML pipelines; classifying unstructured texts and images; genAI model pipelines